FTY720 Treatment in the Convalescence Period Improves Functional Recovery and Reduces Reactive Astrogliosis in Photothrombotic Stroke

نویسندگان

  • Robert Brunkhorst
  • Nathalie Kanaan
  • Alexander Koch
  • Nerea Ferreirós
  • Ana Mirceska
  • Pia Zeiner
  • Michel Mittelbronn
  • Amin Derouiche
  • Helmuth Steinmetz
  • Christian Foerch
  • Josef Pfeilschifter
  • Waltraud Pfeilschifter
چکیده

BACKGROUND The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors. METHODS We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence. RESULTS FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue. CONCLUSION Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memantine enhances recovery from stroke.

BACKGROUND AND PURPOSE Stroke treatment is constrained by limited treatment windows and the clinical inefficacy of agents that showed preclinical promise. Yet animal and clinical data suggest considerable poststroke plasticity, which could allow treatment with recovery-modulating agents. Memantine is a well-tolerated N-methyl-D-aspartate glutamate receptor antagonist in common use for Alzheimer...

متن کامل

Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia.

BACKGROUND AND PURPOSE Both the administration of growth factors and physical therapy such as forced arm use (FAU) are promising approaches to enhance recovery after stroke. We explored the effects of these therapies on behavioral recovery and molecular markers of regeneration after experimental ischemia. METHODS Rats were subjected to photothrombotic ischemia: sham (no ischemia), control (is...

متن کامل

Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke.

Functional recovery after stroke varies greatly between patients, potentially due to differences in gene expression. Several processes like angiogenesis, neurogenesis, axonal reorganization and synaptic plasticity act in concert to restore neurological functions. The ephrin family has known roles in all these processes. EphA4 is the most abundant ephrin receptor in the nervous system. Therefore...

متن کامل

Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...

متن کامل

Progressive cognitive deficits in a mouse model of recurrent photothrombotic stroke.

BACKGROUND AND PURPOSE In spite of its high disease burden, there is no specific treatment for multi-infarct dementia. The preclinical evaluation of candidate drugs is limited because an appropriate animal model is lacking. Therefore, we aimed to evaluate whether a mouse model of recurrent photothrombotic stroke is suitable for the preclinical investigation of multi-infarct dementia. METHODS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013